Mellitate: A multivalent anion with extreme charge density causes rapid aggregation and misfolding of wild type lysozyme at neutral pH

نویسندگان

  • Grzegorz Ścibisz
  • Robert Dec
  • Wojciech Dzwolak
چکیده

Due to its symmetric structure and abundance of carboxyl groups, mellitic acid (MA-benzenehexacarboxylic acid) has an uncommon capacity to form highly ordered molecular networks. Dissolved in water, MA dissociates to yield various mellitate anions with pronounced tendencies to form complexes with cations including protonated amines. Deprotonation of MA at physiological pH produces anions with high charge densities (MA5- and MA6-) whose influence on co-dissolved proteins has not been thoroughly studied. As electrostatic attraction between highly symmetric MA6- anions and positively charged low-symmetry globular proteins could lead to interesting self-assembly patterns we have chosen hen egg white lysozyme (HEWL), a basic stably folded globular protein as a cationic partner for mellitate anions to form such hypothetical nanostructures. Indeed, mixing of neutral HEWL and MA solutions does result in precipitation of electrostatic complexes with the stoichiometry dependent on pH. We have studied the self-assembly of HEWL-MA structures using vibrational spectroscopy (infrared absorption and Raman scattering), circular dichroism (CD), atomic force microscopy (AFM). Possible HEWL-MA6- molecular docking scenarios were analyzed using computational tools. Our results indicate that even at equimolar ratios (in respect to HEWL), MA5- and MA6- anions are capable of inducing misfolding and aggregation of the protein upon mild heating which results in non-native intermolecular beta-sheet appearing in the amide I' region of the corresponding infrared spectra. The association process leads to aggregates with compacted morphologies entrapping mellitate anions. The capacity of extremely diluted mellitate anions (i.e. at sub-millimolar concentration range) to trigger aggregation of proteins is discussed in the context of mechanisms of misfolding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermal Inactivation and Aggregation of Lysozyme in the Presence of Nano- TiO2 and Nano-SiO2 in Neutral pH

Protein aggregation is a problem in biotechnology. High temperature is one of the most important reasons to enhance enzyme inactivation and aggregation in industrial systems. This work focuses on the effect of TiO2 and SiO2 nanoparticles on refolding and reactivation of lysozyme. In the presence of TiO2 and SiO2 nanoparticles, after enzyme heat treatm...

متن کامل

Thermal Inactivation and Aggregation of Lysozyme in the Presence of Nano- TiO2 and Nano-SiO2 in Neutral pH

Protein aggregation is a problem in biotechnology. High temperature is one of the most important reasons to enhance enzyme inactivation and aggregation in industrial systems. This work focuses on the effect of TiO2 and SiO2 nanoparticles on refolding and reactivation of lysozyme. In the presence of TiO2 and SiO2 nanoparticles, after enzyme heat treatment at 98C for 30 min, not only aggregates w...

متن کامل

Structural analysis of the temperature-sensitive mutant of bacteriophage T4 lysozyme, glycine 156----aspartic acid.

The structure of the mutant of bacteriophage T4 lysozyme in which Gly-156 is replaced by aspartic acid is described. The lysozyme was isolated by screening for temperature-sensitive mutants and has a melting temperature at pH 6.5 that is 6.1 degrees C lower than wild type. The mutant structure is destabilized, in part, because Gly-156 has conformational angles (phi, psi) that are not optimal fo...

متن کامل

Chromatin Aggregation Depends on the Anion Species

The effects of anions on chromatin aggregation may be classified into three categories. First, monovalent anions, glutamate, acetate, chloride, and thiocyante, follow the lyotropic series in their effects on both H1 histone displacement. and chromatin aggregation. Second, alkyl carboxylrrtes and dicarboxylates differ in their ability to induce chromatin aggregation depending on charge density, ...

متن کامل

Association of lysozyme with phospholipid vesicles is accompanied by membrane surface dehydration.

Lysozyme is a globular protein which is known to bind to negatively charged phospholipid vesicles. In order to study the relationship between binding of the protein and the subsequent destabilization of the phospholipid vesicles a set of experiments was performed using phospholipid monolayers and vesicles. Using microelectrophoresis the binding of lysozyme to phospholipid vesicles made of PS wa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017